Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1.

نویسندگان

  • Matthew J Marshall
  • Andrew E Plymale
  • David W Kennedy
  • Liang Shi
  • Zheming Wang
  • Samantha B Reed
  • Alice C Dohnalkova
  • Cody J Simonson
  • Chongxuan Liu
  • Daad A Saffarini
  • Margaret F Romine
  • John M Zachara
  • Alexander S Beliaev
  • James K Fredrickson
چکیده

Pertechnetate, (99)Tc(VII)O(4)(-), is a highly mobile radionuclide contaminant at US Department of Energy sites that can be enzymatically reduced by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble Tc(IV)O(2(s)). In other microorganisms, Tc(VII)O(4)(-) reduction is generally considered to be catalysed by hydrogenase. Here, we provide evidence that although the NiFe hydrogenase of MR-1 was involved in the H(2)-driven reduction of Tc(VII)O(4)(-)[presumably through a direct coupling of H(2) oxidation and Tc(VII) reduction], the deletion of both hydrogenase genes did not completely eliminate the ability of MR-1 to reduce Tc(VII). With lactate as the electron donor, mutants lacking the outer membrane c-type cytochromes MtrC and OmcA or the proteins required for the maturation of c-type cytochromes were defective in reducing Tc(VII) to nanoparticulate TcO(2) x nH(2)O((s)) relative to MR-1 or a NiFe hydrogenase mutant. In addition, reduced MtrC and OmcA were oxidized by Tc(VII)O(4)(-), confirming the capacity for direct electron transfer from these OMCs to TcO(4)(-). c-Type cytochrome-catalysed Tc(VII) reduction could be a potentially important mechanism in environments where organic electron donor concentrations are sufficient to allow this reaction to dominate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and characterization of the [NiFe]-hydrogenase of Shewanella oneidensis MR-1.

Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H(2)ase) that has been implicated in H(2) production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H(2)ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H(2)ase were cloned and then expressed in an MR-1 mutant without hyaB and hydA...

متن کامل

Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type c...

متن کامل

Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1

Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components f...

متن کامل

Influence of riboflavin on the reduction of radionuclides by Shewanella oneidenis MR-1.

Uranium (as UO2(2+)), technetium (as TcO4(-)) and neptunium (as NpO2(+)) are highly mobile radionuclides that can be reduced enzymatically by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble species. The redox chemistry of Pu is more complicated, but the dominant oxidation state in most environments is highly insoluble Pu(I...

متن کامل

Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1

In the absence of O(2) and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III)] (oxy)(hydr)oxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III) oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental microbiology

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2008